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Abstract

Molecular representation learning is crucial for the prob-
lem of molecular property prediction, where graph neu-
ral networks (GNNs) serve as an effective solution due to
their promising structure modeling capability. Since la-
beled data is often scarce and expensive to obtain, it is
a great challenge for GNNs to generalize in the extensive
molecule space. Recently, the training paradigm of “pre-
train, fine-tune” has been leveraged to improve the gener-
alization performance of GNNs. It uses self-supervised in-
formation to pre-train GNNs, and then performs fine-tuning
to optimize the downstream task with only a few labels.
However, it has been shown that the pre-training does not
always provide statistically significant improvement, espe-
cially for self-supervised learning with random structural
masking. Particularly, the molecular graph is character-
ized by motif subgraphs, which are frequently occurring
and related to molecular properties. To leverage the task-
related motifs, we first propose a novel paradigm of “pre-
train, prompt, fine-tune” for molecular representation learn-
ing, named molecule continuous prompt tuning (MolCPT).
Based on the pre-trained model, MolCPT defines a mo-
tif prompting function to project the standalone input into
an expressive prompt, which augments the molecular graph
with meaningful motifs in the continuous embedding space.
In this way, the motif prompt provides more structural pat-
terns to aid the downstream classifier in identifying molecu-
lar properties. By optimizing downstream classification loss,
the motif embeddings are encoded with semantic knowledge
for exact molecular analysis. Extensive experiments on vari-
ous benchmark datasets show that MolCPT efficiently gener-
alizes pre-trained GNNs for molecular property classification
with or even without a few fine-tuning steps. Our code is in:
https://anonymous.4open.science/r/GraphCL-7105.

1 Introduction

Molecular property prediction is a fundamental task in
many fields, such as the predictions of quantum me-
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chanics, physical chemistry, and toxicity [21]. By view-
ing the atoms and bonds as the nodes and edges, re-
spectively, various graph neural networks (GNNs) have
been proposed to model the structure information of
molecular graphs [9[19]/22]. By treating the molecule as
a computation graph, GNNs learn the low-dimensional
node embeddings by passing messages along edges. The
molecule representations are then read out (e.g., sum of
node embeddings) to estimate properties.

Along with the exploration of GNN variants for
different applications, supervised training is notorious
for requiring a sufficiently large amount of input data
and label pairs. This places a great burden on molecu-
lar representation learning, where the labels are lim-
ited compared with the enormous space of possible
molecules. Recent efforts have turned to the “pre-train,
fine-tune” learning strategy. In particular, they pre-
train GNNs with self-supervised learning tasks (e.g.,
contrastive learning [23] and masking predictive meth-
ods [7]) or the open-source molecule collection [2|. The
pre-trained model is expected to improve generalization
performance on downstream label-limited tasks, with
careful fine-tuning.

However, the pre-trained model does not neces-
sarily encode the semantic structure instrumental for
molecular analysis. Different from social graphs, the
molecule is often characterized by motifs, which are fre-
quently occurring subgraph patterns that are indicative
of molecular properties [20]. For example, Benzene ring
is a functional motif of organic molecules that indicates
aromaticity. The vanilla pre-training, e.g., comparing
contrastive examples through random structure mask-
ing [7], is ill-suited for learning meaningful motifs and
distinguishing between different molecules. Even worse,
it is studied that applying self-supervised pre-training
does not guarantee significant improvements without
careful experimental setup [17]. Under the “pre-train,
fine-tune” learning framework, many laborious efforts
have been exerted to tailor and align the pre-trained
objective with the downstream task.

Instead of being trapped in pre-training objective
engineering, we explore the novel strategy of “pre-train,
prompt, fine-tune” to generalize molecular represen-
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tation learning. The prompt technique is first pro-
posed in natural language processing (NLP) [10], where
the prompting function augments the input text with
knowledge description related to the downstream task.
In this way, the pre-trained model will be transferred
and generalized effectively on downstream applications.
For example, given the pre-trained language model,
we consider product review classification with raw in-
put text (e.g., “Absolutely a cost-effective product.”).
The prompting function reformulates the input text as
prompt by appending the task related description (e.g.,
“Absolutely a cost-effective product. Whether it is good
or not?”), which prompts the pre-trained model to pro-
duce the desired results. Motivated from the wide suc-
cess of prompts in NLP [13}[15], we aim at defining the
motif prompt to aid pre-trained GNNs deployed on any
new molecular analysis.

Despite the conceptual simplicity, it is non-trivial
to design the motif prompting function due to the fol-
lowing two challenges. First, it is unclear how to ap-
pend the molecular graph with corresponding motifs
to construct a prompt. Compared with sequential se-
mantic text, graphs are formulated as unordered nodes
and their physical connections. The motif prompt re-
quires domain rules or differential algorithms to com-
bine the molecule and its motifs, which cannot be ap-
plied to other molecular datasets with different bonding
formulas. Second, it is challenging to learn the motif
vocabulary containing expressive patterns for molecu-
lar property prediction. Most motif detection tools are
unsupervised and rely on counting the frequency of sub-
graphs. The derived motifs may contain too much noise
to strongly correlate with the concerned task.

To tackle the above challenges, we propose molecule
continuous prompt tuning (MolCPT) in Figure[I]to gen-
eralize the pre-trained GNNs and enhance downstream
molecular representation learning. Under the paradigm
of “pre-train, prompt, fine-tune”, without loss of gener-
ality, we first adopt self-supervised learning to pre-train
the backbone model. We then propose a motif prompt-
ing function to augment the molecular graph with mo-
tifs in the continuous representation space, and prompt
the downstream classifier to easily recognize molecular
properties. Specifically, we make three key contribu-
tions through MolCPT:

e To flexibly prompt molecular information (chal-
lenge 1), our motif prompting function infers con-
tinuous representations of the molecular graph and
its motifs. Instead of connecting the molecules and
motifs in discrete structure space, we concatenate
their representation vectors to prepare for down-
stream classification. This removes the require-
ment that the motifs should be structurally con-

nected with the molecule, according to specific do-
main knowledge.

e To denoise the motif vocabulary (challenge 2),
we optimize the motif prompt module on the
downstream task. Specifically, we treat the mo-
tif representations as trainable embeddings, and
apply attention networks to organically combine
the molecule and motif representations. Via fine-
tuning, the motif embeddings learn to store molec-
ular property-related knowledge.

e We evaluate MolCPT on a series of molecular graph
benchmarks. Our experimental results demon-
strate that the motif prompt efficiently general-
izes pre-trained GNNs to identify molecular proper-
ties. The average ROC-AUC improvement is up to
14.13%, and the fine-tuning epochs can be reduced
to just 50.

2 Preliminary on GNNs and Pre-training

2.1 Molecular Property Prediction A molecule is
abstracted as a topological graph G = (V, ), where V
and & denote the atoms (nodes) and biochemical bonds
(edges) within the molecule, respectively. Considering
node v € V, we use z, € R? to represent the node’s ini-
tial features, and adopt N, to denote the set of its direct
neighbors. Let T = {(G,y),- -} denote the training
set of molecule and label pairs. The molecular property
prediction task is to learn the molecular representations
and map them to their corresponding label. The molec-
ular representation should generalize over the extensive
space even with a small training set of labeled samples.

2.2 Graph Neural Networks GNNs learn the
molecular topological structure and atom features with
hidden node embeddings, which are read out to gener-
ate the molecular representation. Specifically, following
the message passing strategy [6], GNNs learn the node
embedding by recursively aggregating its neighborhood
and combining with itself. At the k-th layer, the em-
bedding learning of node v is formulated as:

2® = AGGRE({z} ™V, v € N, Uv}, W),

v’

(2.1)
acg,k) € R? is the embedding vector at the k-th layer;
2V = z, at the initial layer; %) € RI*d ig a
trainable weight to encode atom features; and AGGRE
denotes the aggregation and combination function of
node embeddings (e.g., through sum, mean or max
pooling). Suppose the number of graph convolutional
layers is K. To facilitate the following expression,
we use zi) 2 fo(G,v) to represent the final node
representation learned from K-layer GNNs, where 6 =

{6 ... )Y is the set of trainable parameters.
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To obtain the molecule representation used for
property prediction, a readout function (e.g., sum or
mean pooling) is applied to pool all the node embed-

dings as: hg 2 f5(G) = READOUT({z), v € V).

2.3 Pre-train and Fine-tune One of the key chal-
lenges in molecular property prediction is posed by lim-
ited and imbalanced labels, which tend to cause GNNs
to overfit. To improve generalization capability, pre-
training methods have been adopted to learn robust and
transferable knowledge of molecular graphs. Notably,
most of them randomly mask part of the molecule, and
then pre-train the GNN to recover it (i.e., in context
predictive learning [7]) or maximize the mutual infor-
mation between the original molecule and masked one
(i.e., in contrastive learning [20}23])

Given the pre-trained model fy, it serve as initial-
ization to fine-tune on molecular property prediction.
Mathematically, model fy is connected with a new clas-
sifier head p,, often a multi-layer perceptron (MLP)
with parameters . They are fine-tuned together as:

o2 M Suer Loa(G):)
s.t. ginit = gpre,

The constraint means the GNN parameters are initial-

ized as the pre-trained model. L is the classification loss

function, such as cross-entroy loss.

3 Molecule Continuous Prompt Tuning

Although many pre-training methods have been pro-
posed to learn the transferable knowledge, it has been
observed that the generalization improvement depends
a lot on the experimental setting. For example, the
pre-training objective needs to be tailored according
to the downstream problem, while the hyperparame-
ters are required to be tuned laboriously [17]. Par-
ticularly, by unifying the experimental hyperparame-
ters, applying self-supervised pre-training only achieves
the marginal improvement or even performs worse than
without pre-training. This is because the self-supervised
pre-training mainly relies on the random context mask-
ing for both the predictive learning and contrastive
learning. It is difficult for such general pre-training to
extract motifs, which are the frequently appearing and
indicative for the downstream molecular properties. For
example, Benzene rings are the elemental subgraphs for
organic molecules, while carbon rings and NO2 groups
are prone to be mutagenic. Although a number of
motif related works has been studied previously, they
are mainly used for the traditional unsupervised em-
bedding learning [11,/14]. Some recent solutions have
been proposed to leverage the motifs for pre-training.
They rely on the motif learning module and domain
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Figure 1: Overview of MolCPT motif prompt genera-
tion. Molecule graph G passes through the GNN en-
coder to obtain hg. Concurrently, G is fragmented into
several motifs. MolCPT looks up the motifs’ embed-
dings, and passes them into attention module to obtain
ecpt- Ng and ecpy are concatenated to produce a motif
prompt as input to the classification head.

Molecular Graph

rule for the masking or generation of motifs to pre-train
GNNs [20,[24], which is inefficient and non-general to
the diverse downstream analysis. Thus it is worthy to
study how to use motifs in an easy plug-in way for any
molecular property classification problem.

In this work, we shift to investigate the motif
prompt under the new training paradigm of “pre-train,
prompt, fine-tune”. The prompt technique is firstly pro-
posed in NLP, which reformulates the input text by
appending the indicative descriptions according to the
downstream application (see example in Introduction).
Given a suite of appropriate prompts, a single model
pre-trained with the general self-supervised fashion can
be adapted to diverse problems. This advantage frees
one from the laborious design of specific pre-training ob-
jective for each task, and allows the recycle of previous
model in literature. Our MolCPT is proposed to lever-
age the motifs to prompting the input molecules, and
generalize the pre-trained GNNs to each given task.

3.1 Pre-train, Prompt, Fine-tune Before going
to the technical details of MolCPT, we first mathemati-
cally define the motif prompting function, and then lay
out the whole pipeline of “pre-train, prompt, fine-tune”.

DEFINITION 3.1. (GRAPH MOTIF) Consider molecule
graph G = (V,&). We define its set of motifs as:

(3.3) Mgé{M(l),m 7M(n)},
where M) denotes the j-th motif, and n denotes the
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total number of motifs belonging to molecule G. Since
motifs are defined as the subgraphs of G, each motif
MU = (YW W) where VI CV and W) C £.

DEFINITION 3.2. (MOTIF PROMPTING FUNCTION)

A motif prompting function forompt 5 used to refor-
mulate the input molecule by appending the series of
corresponding motifs:

(34) G/ - fprompt(GaMG)a

where G’ is named as motif prompt, which is a new
hypergraph generated by highlighting the key subgraph
patterns to indicate the molecular property prediction.
Several possible solutions could be adopted to define
fprompt- For example, one can simply concatenate them
as disjoint hypergraph, or defines rules to specify the
connections between the motifs and their molecule. Our
MolCPT is illustrated in Figure [1} which realizes the
new learning paradigm of “pre-train, prompt, fine-tune”
via the following three steps:

e Model pre-training. As introduced in Sec-
tion we use the general pre-training objective
to learn backbone GNNs. This removes the engi-
neering efforts to extensively design and pre-train
model for molecule analysis at hand.

Prompt addition. According to Eq. (3.4), we re-
formulate the standalone molecule as motif prompt
by appending the indicative motifs.

Prompt fine-tuning. We use motif prompt G’
to replace the original graph G in the fine-tuning
objective of Eq. . All the parameters (or only
the new weights involved in prompting function
and classification head) are efficiently updated to
optimize the downstream loss with a few epochs.

As pointed out above, to generalize the prompt
technique to molecule analysis, the challenges lie in
how to define the expressive prompting function to
connect motifs and molecule, and how to fine-tune
the prompting function to indicate the downstream
applications. Particularly, MolCPT consists of three
functional modules: motif-based corpus generation to
extract the meaningful motif subgraphs, continuous
prompting function to reformulate the input data, and
motif constrained learning to fine-tune model.

3.2 Motif-based Corpus Generation Considering
the countless connection modes between atoms in the
real-world datasets, the set of possible motifs may be
too large to represent the key knowledge of molecular
properties. MolCPT first preprocesses the molecule
dataset to construct a limited vocabulary of motifs,
which serves as prompting corpus to inform molecule.

In general, the motif fragmentation should follow-
ing two formulas: (i) The produced motifs must contains
the semantic structure information, e.g. by extracting
meaningful functional groups from the dataset. (ii) The
produced motifs must occur frequently enough. Mol-
CPT uses the fragmentation method provided by Motif-
based Graph Self-Supervised Learning (MGSSL) frame-
work [25]. MGSSL adapts the Breaking of Retrosyn-
thetically Intereesting Chemical Substructures (BRICS)
algorithm [3] to form the motif vocabulary. By further
filtering out the low frequent motifs, we mathematically
define the motif vocabulary as follows:

DEFINITION 3.3. (MOTIF VOCABULARY) For dataset
T ={(G,y), -}, let Mg denote the corresponding set
of fragmented motifs from each graph G. A motif vo-
cabulary is the union of frequent motifs:

(3.5)
Mol £ (Uger{MD € Mg : [MY| > t}) u{M O},
where t is a threshold hyperparameter to select the
frequently appearing motifs, and |MU)| refers to the
number of molecules in the whole dataset containing
motif M ). Notably, M©) is an empty motif containing
none of nodes or edges. After the threshold filtering,
there may exist molecules without any frequent motif
associated with them. We include the empty motif to

characterize and prompt these molecules.

3.3 Continuous Prompting Function Unlike the
sequential prompting function in NLP that directly con-
catenates the discrete words, it is difficult for the graph
prompting function to connect the structured motifs to
their molecule. The disjoint combination overlooks their
inherent correlations and results in poor performance.
Although there are some related works applying the de-
terministic rules or differentiable algorithms to build up
the connections, they either rely on the domain knowl-
edge, or deteriorate the training efficiency due to the
large amount of candidate links.

Instead of optimizing over discrete structure, we
propose the continuous prompting function to concate-
nate the motifs and molecule embeddings in the hidden
representation space. Specifically, it is defined below:

DEFINITION 3.4. (CONTINUOUS PROMPTING FUNCTION)

A continuous prompting function fepe concatenates the
embeddings of molecule G and its frequent motifs, and
generates the prompt embedding as:

(36) /G = prt(hG7 {e(j)7f0r M(J) e MG m Mmol})-

he and hy, is the original and resulted prompt em-
bedding of molecule graph G, respectively. el) e R4
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is the embedding of motif M) such as one-hot em-
bedding. We consider the frequently appearing frag-
mented motifs, which are defined by the intersection set
of MaN Mol For the molecule without any meaning-
ful motif, we use the embedding of empty motif to unify
the prompt learning. To obtain the expressive prompt
embedding h,, we free the motif embeddings as train-
able table, and parameterize the continuous prompting
function with attention module as follows.

Motif Embedding Table. We adopt a trainable
table to maintain the motif embeddings, which are fine-
tuned together to learn the indicative motif knowledge.
Mathematically, we define the motif embedding table
Epol € RIMmallxd where | M mo1| denotes the cardinality
of motif vocabulary. Each motif embedding e is look
up correspondingly from table.

A proper embedding initialization is crucial for the
molecular property prediction. One naive strategy is
to randomly initialize and rely on training to learn the
semantic meaning. However, the random initialization
fails to distinguish the diverse motifs at the initial stage,
and may converge to poor generalization area. To
indicate the molecule analysis with the meaningful motif
prompt, we propose to initialize them via inferring the
pre-trained model. Recall from Definition that each
motif M) has a subgraph structure (V) £0)). Thus,
by treating the motif as input, the pre-trained GNNs
could be used to infer the subgraph embedding and
initialize V) as: eU) £ fo(M)). Notably, we initialize
the empty motif M(©) as e(® = 6, where 0 denotes the
all-zeros vector representing the semantic absence.
Molecule-motif Cross Attention. Depending on the
chemical bonds between the motifs and the molecule, a
common sense is the diverse motifs weight differently to
the final molecular properties. Although the continuous
prompting function removes the connection constraints
between motifs and molecules, it would lead to the
poor topological encoding between them and the drop
of performance. Besides, given the various numbers of
motifs among molecules, one is incapable of directly
concatenating their embeddings and then feeding them
into the downstream classifier.

To address these problems, we leverage the multi-
head attention module to weight the motifs, and gener-
ate the abstract motif representation for one molecule.
Mathematically, let Eg denote the motif embedding
matrix by considering the contained motifs in Mg N
Mo for molecule G, where the motif embeddings are
stacked row-wisely. The abstract motif representation
ecpt € R? to prompt molecule G is given by:

(Woha) " (EcWy)
Vd

(3.7)  ecpt = softmax < > EcW,,

where W, W and W, € R%*4 are the query, key, and
value transformation matrices, respectively. In particu-
lar, we treat the graph representation a query to attend
on the related motifs, and obtain the abstract motif rep-
resentation indicating the molecular properties. Finally,
the continuous prompting function f.pt in Eq. is
instantiated as: hj; = Concate(hg,ecpt) € R*. hl, is
used as input to classifier p, to estimate properties.
Given the above motif attention, we further adopt
an empirical trick to freeze the backward gradients on
graph representation hg. In other word, we decouple
the computations of molecule graph representation and
abstract motif embedding, and stop the backward gra-
dients crossing between them. The rationale behind the
gradient freezing are explained from two perspectives:
(i) This allows MolCPT to learn the informative motif
prompts flexibly without restricting to preserve knowl-
edge held in the pre-trained GNNs; (ii) The decoupling
allows ones to directly infer the existing GNNs, and only
fine-tune the light weights in prompting function and
classifier. Similar to NLP, the motif prompt is an ef-
ficient plug-in technique to extend a specific model to
solve a great number of molecular analysis problems.

3.4 Motif Constrained Learning Based on the
continuous prompt embedding hy,, we reformulate the
fine-tuning objective as:
(3.8)
WG B Wy 3 (eyer L0 (He): ) + A Bl 2.
s.t. gnit = gpre,

A is a loss hyperparameter, and ||Ep1||2 denotes its L2
norm. We note that only a small fraction of related
motif embeddings are updated for a batch of molecules.
Since some motifs involve frequently during the fine-
tuning process, we use L2 penalty to constrain the scale
of their embeddings to be comparable with the others.

As analyzed in the last section, model parameter 6
could also be fixed to facilitate the deployment of any
pre-trained GNNs. MolCPT is then simplified into the
MLP-based model with two extra potential advantages:
(i) Fine-tuning efficiency. By storing the molecule
graph representations, we can avoid repeating the time-
consuming graph convolutions each time for the new
analysis tasks on the same dataset. (ii) Engineering
efficiency. The indicative motif prompt decouples the
co-design of pre-training and fine-tuning, and accelerate
the engineering deployment. The traditional co-design
has to select the proper pre-training objective and then
test the fine-tuning performance, which requires tedious
trials and repeated graph convolutional computations.
In MolCPT, we only needs to design the indicative
prompt to adapt any a given pre-trained GNNs to each
problem, which is as efficient as MLP tuning.
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4 Related Work

Pre-training GNNs. Graph pre-training aims to cap-
ture significant structural patterns in the input graph
distribution, in a self-supervised manner [7]. A grow-
ing number of graph pre-training modules are making
significant advancements in various problem domains.
Deep Graph Infomax [18] pre-trains GNNs to maxi-
mize mutual information between subgraph represen-
tations and high-level graph summaries. Hu et al. [7]
pre-trains on the level of individual nodes as well as
entire graphs. GraphCL [23] uses contrastive learning
with domain-specific graph augmentations, significantly
improving transfer learning on molecular tasks. Certain
pre-training tasks are designed specifically for molecu-
lar property prediction. MGSSL [25] introduces a motif
generation pre-training task that captures substructures
in molecular graphs. MolCLR [20] proposes different
graph augmentations for contrastive learning to capture
the general molecular structure.

Prompt in Natural Language Processing. A grow-
ing number of researchers have adopted a new approach
for applying pre-trained language models on down-
stream tasks, called “pre-train, prompt, predict” [10].
This approach does not use a task-specific pre-training
objective, but instead defines task-specific prompting
functions that align the original pre-training task with
the help of textual prompts. Prompts can be engineered
for better downstream performance, in two different
ways. Manual Template Engineering creates prompt
templates from human intuition [13]. Automated Tem-
plate Learning learns prompt templates as part of the
finetuning procedure, and can learn over discrete [41[15]
or continuous prompts [12|. Although there have been
some prompted related works proposed in graph do-
main, they mainly target at node classification in the
knowledge or social graphs [1}16].

5 Experiments

We investigate how molecular representations aug-
mented by MolCPT perform on downstream prediction
tasks. Specifically, we raise the following questions: Q1:
Compared with standard supervised and pre-training
baselines, how effective is MolCPT at boosting molec-
ular property prediction scores? Q2: How efficient
does the motif prompting function adapt the pre-trained
model for downstream application? Q3: How does the
choice of motif vocabulary affect downstream perfor-
mance, with and without the vocabulary filtering step?
Q4: How does the prompt initialization strategy af-
fect prompt tuning? We provide extra experiments in
the appendix to verify MolCPT is more powerful when
stacked with other prompt techniques.

5.1 Datasets We evaluate MolCPT on eight bench-
mark datasets of molecular property classification con-
tained in MoleculeNet [21], namely BBBP, BACE, Clin-
Tox, Tox21, SIDER, HIV, MUV, and ToxCast. Details
for these datasets are described in Appendix [A]

5.2 Baselines To evaluate the proposed MolCPT
based on “pre-train, prompt, fine-tune”, we mainly
compare with two categories of baselines, including the
supervised algorithms without pre-training and the pre-
trained approaches without prompt.

Supervised baselines. We consider state-of-the-art
GNNs widely used for molecular property prediction,
which are updated only via the training label set.
Particularly, we include GCN [9], GIN [22], GAT [19],
and GraphSAGE [6].

Pre-trained baselines. This section refers to the
training paradigm of “pre-train, fine-tune”, where
the backbone GNNs are first pre-trained with self-
supervised techniques and then fine-tuned with the
training label set. We consider five typical pre-trained
approaches, including Infomax [18] maximizing the mu-
tual information between nodes and their corresponding
graph, AttrMasking [7] predicting the masked node fea-
tures, ContextPred [7] predicting the masked topology
context, GraphCL [23] contrasting the graphs and their
randomly perturbed counterparts, and MolCLR [20]
leveraging motif elements to generate contrasting pairs.

5.3 Implementation of MolCPT To demonstrate
the generality of MolCPT to the pre-training objectives,
we choose three pre-trained baselines to implement the
plug-in prompt technique. Specifically, we adopt Attr-
Masking, GraphCL and MolCLR due to their superior
performances for molecule analysis. To guarantee the
fair comparison, we use the same settings provided in
their open repositories, including the 5-layer GIN back-
bone, pre-training objectives, and the pre-training as
well as fine-tuning hyperparameters. Besides, MolCPT
uses 4 attention heads by default. We tune the key
hyperparameters of motif filtering threshold ¢ and loss
penalty A to fully demonstrate the prompt advantage.

5.4 Molecule Property Prediction Studies We
compare MolCPT with the baseline models in Table
to answer Q1. We make the following observations:

@ MolCPT generally boosts the model performance
for the molecular property prediction. It should be noted
that the pre-trained approaches are prone to outperform
the supervised ones by encoding the prior topological
knowledge. Based upon AttrMasking, GraphCL, and
MolCLR frameworks, our MolCPT further generalize
the pre-trained model to indicate the molecular proper-
ties with the motif prompt. Particularly, compared with
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Table 1: Results on eight MoleculeNet tasks by averaging 5 runs and measuring in ROC-AUC (%). Results on
MUYV and ToxCast are omitted for MolCLR because its open-sourced repository does not support evaluation.

Frameworks Methods Datasets
BBBP BACE ClinTox Tox21 SIDER HIV MUV  ToxCast
GCN [9] 64.9+3.0 73.6+3.0 65.8+4.5 74.9+0.8 60.0+1.0 75.7+t1.1 73.2+1.4 63.3+0.9
Supervised GIN [22] 65.8+4.5 70.1+5.4 58.0+4.4 74.0+0.8 57.3+1.6 75.3+1.9 71.812.»?} 63.4+0.6
GAT [19] 66.2+2.6 69.7+6.4 58.5+3.6 75.4+0.5 609+1.4 T72.9+1.8 66.6+2.2 64.6+0.6
GraphSAGE [6] 66.2+2.6 69.7+6.4 58.5+3.6 75.4+0.5 60.9+1.4 T72.9+1.8 66.6+2.2 64.6+0.06
Infomax [18] 68.84+0.8 75.9+1.6 69.9+3.0 75.3+0.5 58.4+0.8 76.0+0.7 75.3+2.5 62.7+0.4
Pre-train AttrMasking [7] 64.3+2.8 79.3+1.6 T71.8+4.1 76.7+0.4 61.0+0.7 77.2+1.1 74.7+1.4 64.2+0.5
ContextPred |7] 68.0+2.0 79.6+1.2 65.9+3.8 75.7+0.7 60.9+0.6 77.3+1.0 75.8+1.7 63.9+0.6
GraphCL |23} 70.1+0.3  73.8+0.1 80.8+0.6 73.8+0.3 59.3+0.2 77.3+0.9 70.1+1.1 61.7+0.1
MolCLR [20] 73.9+0.2 789+0.6 83.7+1.8 72.3+0.3 60.5+0.1 76.9+0.3 — —
AttrMasking+MolCPT | 66.2+1.3 79.7+0.3 85.9+1.1 76.4+0.2 60.0+0.5 76.4+0.2 76.5+1.0 64.8+0.2
Prompt GraphCL+MolCPT 72.9+0.7 77.1+0.5 84.3+0.9 75.7+0.3 62.1+0.3 75.2+0.4 76.2+0.6 63.4+0.1
MolCLR+MolCPT 74.7+0.3 79.2+1.1 86.5+1.1 72.6+0.1 61.4+0.3 76.9+0.1 — —

GraphCL, MolCPT improves the average test scores by
up to 6.10% on 7 out of 8 tasks. Compared with Mol-
CLR, MolCPT improves scores by up to 2.85% on all
6 tasks, and compared with AttrMasking, MolCPT im-
proves scores by up to 14.13% on 5 out of 8 tasks.
These results also empirically validate that MolCPT is
agnostic to the choice of pre-training framework. One
could easily reuse the general pre-training objective, and
quickly extend it to the downstream problem by design-
ing the adaptive motif prompt.

O MolCPT reduces the negative transfer resulted
from the misaligned pre-training and fine-tuning objec-
tives. We find that GraphCL exhibits the negative
transfer and performs even poorly than vanilla GCN
on Tox21, SIDER, MUV, and ToxCast datasets. The
authors attribute this issue to the ill-posed graph aug-
mentations that corrupt chemical structure information
during pre-training. In other word, the pre-training ob-
jective with random topological masking is not in line
with the molecule analysis. The “pre-train, fine-tune”
strategy thus often requires extensive efforts to design
the pre-training objectives for each specific problem. In
this work, MolCPT bridges the objective misalignment
with the motif prompting function, which augments the
input molecule with indicative and related motifs. This
supports our hypothesis that the continuous motif em-
beddings can learn the semantic property knowledge
from the downstream application.

5.5 Freezing Weight We further investigate Q2 by
fixing the pre-trained weights, which aims to evaluate
whether the motif prompt could adapt the agnostic pre-
trained model to the problem at hand. We consider two
weight freezing cases: (i) Freeze the pre-trained GNNs,
and only train the new classification head and contin-
uous prompting function; (ii) Freeze pre-trained GNNs
and the randomly initialized classifier, and only fine-
tune prompt. The first case mimics the real-world set-

tings, where one is freed to update the parameters in-
volved in complex graph convolutions. The second ab-
lation targets at extremely estimating whether MolCPT
alone can prompt the pre-trained GNNs to the down-
stream application. We list the results in Table [2[ and
make the following observations:

® Motif prompt facilitates the accurate estimation
of molecular properties, without needing to fine-tune
backbone GNNs. In general, with the frozen pre-trained
GNN, MolCPT improves the average test scores by
4.21% above MolCLR, and 1.98% above GraphCL.
Notably, when freezing the pre-trained GNNs as well
as classification head, GraphCL and MolCLR are de-
generated to random guessing, and constrained around
the ROC-AUC score of 0.5. In contrast, by tuning the
plug-in continuous prompt embeddings, our MolCPT
encodes the task-relevant knowledge to indicate the pre-
trained GNNs towards property identification. For the
case of freezing only the pre-trained GNNs, MolCPT
has the poor results on HIV and MUV. One of the pos-
sible reasons is the motif vocabularies are much larger
in these two benchmarks, which poses great challenge
to the standalone tuning of motif prompts.

5.6 Impact of Fine-tuning Time To further an-
swer Q2, we reduce the fine-tuning epochs to just 50,
and evaluate whether the motif prompt could quickly
adapt pre-trained model for molecular property predic-
tion. The results are listed in Table|3] where we observe:

® MolCPT tends to delivers the desired classifica-
tion performance even with limited fine-tuning epochs.
This is because the motif prompting function bridges
the pre-training and fine-tuning objectives. The pre-
trained GNNs are efficiently tailored for the new task
with the motif prompt, which is highly related to the
molecular properties. We illustrate loss dynamic in Fig-
ure [3] where MolCPT converges quickly to a stable gen-
eration area. Recalling the last experimental observa-
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Table 2: ROC-AUC (%) results for models with freezing pre-trained GNNs and/or classification head.

. Datasets

Freeze Weights  Methods BBBP BACE ClinTox Tox21 SIDER HIV MUV  ToxCast
GraphCL 60.2-0.0 66.2-0.0 57.0-0.0 67.940.0 54.7+0.0 70.5-0.0 70.8-0.0 56.3-0.0

Pre-trained MoICLR [20] 67.3+0.5 61.28+0.4 44.0+0.7 69.150.5 57.54+0.3 67.840.6 — —

re-traine CraphCL + MolCPT|60.540.8 74.1+-0.5 73.4+0.8 67.4+0.7 55.940.3 645408 65.7+2.2 57.9+0.3
MoICLR + MolCPT |68.840.3 68.5+2.3 67.6=1.1 70.940.2 55.840.5 60.7-0.1 . .
GraphCL 55.3+0.0 51.6+0.0 59.3+0.0 49.040.0 49.740.0 42.6+0.0 48.9+0.0 50.6+0.0

Pre-trained & MolCLR [20] AT.944.3 561464 47.841.6 51.5+41.0 49.941.0 52.642.4 — —

Classification Head GraphCL + MolCPT
MolCLR + MolCPT

51.6+0.1
64.2+1.6 71.4+1.3

71.1+0.2 73.8+£0.7 63.2+0.7

52.7+0.4 63.5+0.4 50.3%+1.2 53.3+0.1

54.7+£3.0 58.0+1.8 50.3+£0.7 49.3+3.4

Table 3: ROC-AUC results by evaluating backbone models and MolCPT restricted to 50 finetuning epochs.

Methods Datasets

BBBP BACE ClinTox Tox21 SIDER HIV MUV  ToxCast
GraphCL 70.4+0.4  73.6+£0.1 79.3+0.7 73.7+0.5 58.0+0.5 78.2+0.7 70.9+0.3 61.7+0.1
MolCLR 73.7+0.4 783+0.6 &81.1+0.1 72.3+£0.1 61.2+0.2 75.5+0.5 — —
GraphCL + MolCPT | 71.3+0.8 78.0+£0.5 84.7+1.1 75.5+0.2 59.5+0.2 75.7+0.3 75.94+0.6 63.7+0.1
MolCLR + MolCPT | 72.6+0.7 79.24+0.7 85.1+1.1 72.7+0.2 61.7+0.3 75.0+0.5 — —
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Figure 2: Ablation studies of motif detection method
(Left) and filtering (Right), averaging over all datasets.

MolICLR

tion, we reach the conclusion that MolCPT enables the
pre-trained model to be efficiently and reliably inferred
with or even without a few fine-tuning epochs.

5.7 Number of Key Motifs To answer Q3, we
study two key components affecting the size of motif vo-
cabulary in MolCPT: the motif fragmentation method,
and the filtering threshold. By ablating these compo-
nents on backbones GraphCL and MolCLR, we have the
following observations visualized in Figure

® The motif fragmentation method heavily affects
downstream task performance. We evaluate three dif-
ferent fragmentation methods, in order of increasing
granularity: JT-VAE [8], MGSSL (ours) [25], and
BRICS . Granularity is an important consideration
when generating the motif vocabulary: finds that
coarse-grained motifs have lower occurrence frequencies,
preventing the model from learning motif embeddings
suited for downstream application. On the other hand,
fine-grained motifs are typically single atoms or bonds,
which capture no semantic meaning. We find that the
intermediate granularity of MGSSL produces the most
informative motifs (Figure|[1)).

® The filtering threshold improves model’s general-

7 MolICLR GraphCL 0 10 20E h30 40 50
Figure 3: Ablation study of motif embep:occlcsling initial-
ization (Left), averaging over all datasets. Validation
losses of GraphCL and GraphCL + MolCPT on the

Tox21 dataset (Right).

1zation capability on downstream tasks. Without a fil-
tering step, the motif vocabulary contains rare motifs
whose embeddings are updated on very few molecules.
These rare motif embeddings cannot correlate with the
property related knowledge, and thus fail to indicate the
molecule analysis.

5.8 Prompt Initialization Method We investi-
gate Q4 by testing three different initialization methods
for motif embeddings E,,,: random embedding, mean
embedding, and pre-trained embedding (ours). For the
random embedding, we used uniform Xavier initializa-
tion [5]. We define the mean embedding initialization
as follows: Given a motif M) in the motif vocabulary,
its embedding is initialized by the mean representation
of all molecules M) belongs to. We show the ablation
result in Figure |3} and observe:

@ Choosing the right initialization method is cru-
cial for learning motif embeddings that capture seman-
tic meaning. Given the large volume of molecules in a
dataset, the mean embedding initialization has the com-
parable performance with the random one. The random

Copyright (© 20XX by SIAM
Unauthorized reproduction of this article is prohibited



or mean initialization cannot distinguish between differ-
ent motifs at the starting phase. Thus the motif prompt
fails to provide the semantic knowledge to identify the
molecular properties. We propose to initialize them by
inferring the subgraph embeddings of motifs, which is
simple but surprisingly effective.

6 Conclusion

We propose MolCPT, the first “pre-train, prompt, fine-
tune” training paradigm for molecular property predic-
tion. Specifically, MolCPT proposes the motif prompt-
ing function to bridge the gap between pre-training and
fine-tuning objectives, where the key motifs are used as
corpus to augment the input molecule. Towards free-
ing from the complex link connections between motifs
and their molecule, MolCPT instead uses the contin-
uous prompting function. It concatenate the motifs
and their molecule at the hidden embedding dimen-
sion. A proper initialization method, attention module,
and constrained learning are adopted to encode the mo-
tif embeddings with the semantic knowledge related to
the molecular property. Extensive experiments on eight
benchmarks show the generality, effectiveness, and effi-
ciency to improve pre-trained models.
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